

1

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Software Architecture and Verification

Course

Field of study

Computing

Area of study (specialization)
Software Engineering

Level of study
Second-cycle studies
Form of study

full-time

Year/Semester

1/1

Profile of study

general academic

Course offered in
English

Requirements

compulsory

 Number of hours

Lecture

30

Tutorials

Laboratory classes

30

Projects/seminars

Other (e.g. online)

Number of credit points

6

Lecturers

Responsible for the course/lecturer:

dr hab. inż. Bartosz Walter

email: bartosz.walter@put.poznan.pl

tel. +48 61 655 2980

Faculty of Computing and Telecommunications

ul. Piotrowo 2, 60-965 Poznań

Responsible for the course/lecturer:

mgr inż. Michał Maćkowiak

email: michal.mackowiak@put.poznan.pl

tel. +48 61 655 29 44

Faculty of Computing and Telecommunications

ul. Piotrowo 2, 60-965 Poznań

 Prerequisites

Student starting this module should have a basic knowledge regarding basic algorithms and

computational complexity, object-oriented programming, design patterns, databases, software testing

and web applications. Should have skills allowing solving basic problems related to requirements

analysis, creating software specification, designing systems and skills that are necessary to acquire

information from given sources of information.Student should understand the need to extend his/her

competences and has the willingness to work in a team.

Course objective

1. Provide students with knowledge regarding software architecture, within the following scope of

understanding what is software architecture, how it should be documented and evaluated

2. Introduce students to component- and service-oriented architectures

3. Develop students' teamwork skills in the context of designing software systems

2

Course-related learning outcomes

Knowledge

- has organized and well-formed theoretical general knowledge regarding software architecture,

software testing and software modeling

- has advanced and detailed knowledge related to selected areas of computer science creating software

architecture, documenting system architecture, evaluation of architecture, modeling software,

designing software, testing and verifying software

- has advanced and detailed knowldege regarding software life cycle which involves designing software

architecture, modeling, and creating unit tests

Skills

- is able to acquire, combine, interpret and evaluate information from literature, databases and other

information sources (in mother tongue and English); draw conclusions, and formulate opinions based on

it.

- is able to combine knowledge from different areas of computer science (and if necessary from other

scientific disciplines) to formulate and solve engineering tasks; and use system approach that also

incorporates nontechnical aspects

- is able to assess usefulness and possibility of employing new developments (methods and tools) and

new IT products

- is able to design and evaluate software architecture of complex software systems, using appropriate

methods

- is able to design (according to a provided specification which includes also non-technical aspects) a

complex device, an IT system and is able implement it (at least partially) using appropriate methods,

techniques, and tools (including adjustment of available tools or developing new ones

is able to work in a group, performing different roles, like architect, developer, tester

Social competences

- student understands that knowledge and skills related to computer science quickly become obsolete

- student knows examples and understands the causes of the failures of IT systems that have led to

major financial or social losses, or caused damage to health or even death

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

1. Formative assessment:

a) lectures: based on the answers to the questions which test understanding of material presented on

the lectures;

b) laboratory classes: based on the assessment of the tasks done during classes and as a homework.

2. Summative assesment:

a) verification of assumed learning objectives related to lectures:

- assessment of knowledge and skills, examined by a written test with multiple choices and problem

questions. Student can gain 100 points, to pass minimum 50 points are needed;

- the final grade is determined using the following scale: (90%, 100%] -> 5.0, (80%, 90%] -> 4.5, (70%,

3

80%] -> 4.0, (60%, 70%] -> 3.5, (50%, 60%] -> 3.0, (0%, 50%] -> 2.0;

- discussing the results of the examination

b) verification of assumed learning objectives related to laboratory classes:

- assessment of student's preparation to particular laboratory classes and assessment of student's skills

needed to realize tasks on these classes;

- continuous assessment of student's work during classes - rewarding ability to use learned principles

and methods;

- assessment of projects realization, including ability to work in team.

Programme content

Definition of software architecture. Role of the architect. Process of creating software architecture.

Types of software architects. How and what should be documented in description of software

architecture. Why the architecture should be evaluated. Description of ATAM (Architecture Tradeoff

Analysis Method). Principles of good diagrams. Definition of component-based architecture. Properties

of a component. Inversion of control. Dependency injection methods. Role of a component container.

Review of component container technologies. Definition of service-oriented architecture.

Implementations of service-oriented architecture: web services and REST approach. Modeling

constraints for UML models with OCL. Defining pre-and post-conditions for operations. Validation of OCL

expressions. The Design by Contract concept as a semin-formal method for specifying functionality.

Overview of testing methods at different levels. Role and structure of tests in a software project.

Teaching methods

Lectures: multimedia presentation with the examples presented on a whiteboard.

Laboratory classes: multimedia presentation, exmaples presented on a whiteboard, tasks given by the

tutor to the students.

Bibliography

Basic

1. L. Bass, P. Clements, R. Kazman, "Software architecture in practice", WNT

2. P. Kruchten, "The Rational Unified Process-An Introduction", Addison-Wesley

3. R. V. Binder: "Testing Object-Oriented Systems: Models, Patterns and Tools", Addison-Wesley

Additional

1. D. Spinellis and G. Gousios, "Beautiful Architecture", O'Reilly Media

4

Breakdown of average student's workload

 Hours ECTS

Total workload 145 6,0

Classes requiring direct contact with the teacher 60 3,5

Student's own work (literature studies, preparation for
laboratory classes, preparation for exam, project preparation) 1

85 2,5

1 delete or add other activities as appropriate

